FACTORS ON DEMAND

Optimized Flexible Factors for Risk Estimation and Attribution

Attilio Meucci

http://ssrn.com/abstract=1565134
EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES
EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES
Executive Summary

Risk Estimation vs. Risk Attribution

<table>
<thead>
<tr>
<th>Risk Estimation</th>
<th>Risk Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identify Risk Factors to impose structure on estimate of large multivariate market distribution</td>
<td>• Define Attribution Factors</td>
</tr>
<tr>
<td>• Compute overall portfolio risk (Standard Deviation and Tail Risk) from market distribution</td>
<td>• Allocate overall portfolio risk obtained from Risk Estimation to Attribution Factors</td>
</tr>
<tr>
<td>• Goal: maximize predictive power</td>
<td>• Goal: maximize interpretability and practicality for hedging/trading</td>
</tr>
</tbody>
</table>
Risk Estimation
- Identify Risk Factors \(F_k \) to impose structure on estimate of large multivariate market distribution
- Compute overall portfolio risk (Standard Deviation and Tail Risk) from market distribution
- **Goal**: maximize predictive power

Risk Attribution
- Define Attribution Factors \(F_k \)
- Allocate overall portfolio risk obtained from Risk Estimation to Attribution Factors
- **Goal**: maximize interpretability and practicality for hedging/trading

Traditional Factor Models: same or similar factors for Risk Estimation and Attribution

- Suboptimal choice of “systematic” factors
 - Suboptimal statistical properties for risk estimation
 - Risk attribution factors are not most practical for hedging/interpretation
 - Not portfolio-specific estimation/attribution
- Inflexible choice of loadings (“betas”)
 - Rigid bottom-up aggregation (beta of portfolio is sum of beta of securities)
 - Rigid maximization target (R-square)
 - Rigid unconstrained maximization (CAPM beta)
- Incorrect modeling of non-linear products/derivatives
Risk Estimation
- Identify Risk Factors F_k to impose structure on estimate of large multivariate market distribution
- Compute overall portfolio risk (Standard Deviation and Tail Risk) from market distribution
- **Goal**: maximize predictive power

Risk Attribution
- Define Attribution Factors Z_k
- Allocate overall portfolio risk obtained from Risk Estimation to Attribution Factors
- **Goal**: maximize interpretability and practicality for hedging/trading

Factors On Demand: different factors for Risk Estimation and Risk Attribution

- Flexible choice of factors: “dominant”, instead of “systematic”
 - Ideal statistical properties for risk estimation
 - Ideal hedging/interpretation properties for risk attribution
 - Portfolio-specific estimation/attribution
- Flexible choice of loadings (“betas”)
 - Flexible top-down aggregation
 - Flexible maximization target (R-square, CVaR, etc.)
 - Flexible constrained maximization (best pool, long-only, etc.)
- Consistent across non-linear products/derivatives (full conditional distribution of Z_k)
EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES
Risk Estimation

1. Stocks return estimation

\[R_n = \sum_k b_{n,k} F_k + U_n \]

- \(R_n \) = security return
- \(b_{n,k} \) = loading
- \(F_k \) = systematic factor
- \(U_n \) = idiosyncratic shock

Risk Estimation Rationales
- Estimate the joint distribution of security returns, imposing structure with factor model

Traditional Risk Estimation Techniques
- Regression analysis
Risk Estimation

1. Stocks return estimation

\[R_n = \sum_k b_{n,k} F_k + U_n \]

- \(R_n \) = security return
- \(b_{n,k} \) = loading
- \(F_k \) = systematic factor
- \(U_n \) = idiosyncratic shock

3. Aggregation

\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation

- Standard deviation
 \[\text{Stdev} \{ R_w \} = w' [b \Sigma_F b' + \text{diag}(\sigma_U^2)] w \]
- Value at Risk
 \[\text{VaR} \{ R_w \} \text{ Normal assumption} \]

Risk Estimation Rationales
- Estimate the joint distribution of security returns, imposing structure with factor model
- Use the portfolio positions \(w \) to determine aggregated portfolio return distribution
- Define and compute risk: standard deviation, Value at Risk (tail risk), etc.

Traditional Risk Estimation Techniques
- Regression analysis
- Dimension reduction
- Parametric assumptions
Risk Estimation

1. Stocks return estimation

\[
R_n = \sum_k b_{n,k} F_k + U_n
\]

- \(R_n \) = security return
- \(b_{n,k} \) = loading
- \(F_k \) = systematic factor
- \(U_n \) = idiosyncratic shock

\[
R_n = g(X_1, \ldots, X_S)
\]

Traditional modeling of non-linear securities

- For non-equity securities such as bonds and derivatives, the returns \(R \) are not “invariants”, i.e. they do not behave identically and independently across time

Example: bond

\[
R = \frac{P(X_1, X_2)}{P_0} - 1
\]

- \(P \) : discount formula
- \(X_1 \) : govt curve changes
- \(X_2 \) : spread changes

Example: option

\[
R = \frac{BS(X_1, X_2)}{P_0} - 1
\]

- \(BS \) : Black-Scholes formula
- \(X_1 \) : log-return of underlying
- \(X_2 \) : log-return of implied vol.
Risk Estimation

1. **Stocks return estimation**

\[
R_n = \sum_k b_{n,k} F_k + U_n
\]

- \(R_n\) = security return
- \(b_{n,k}\) = loading
- \(F_k\) = systematic factor
- \(U_n\) = idiosyncratic shock

2. **Risks drivers estimation**

\[
X_s = \sum_k b_{s,k} F_k + U_s
\]

- \(X_s\) = risk driver
- \(b_{s,k}\) = loading
- \(F_k\) = systematic factor
- \(U_s\) = idiosyncratic shock

3. **Pricing**

\[
R_n = g(X_1, \ldots, X_S)
\]

Traditional modeling of non-linear securities

- For non-equity securities such as bonds and derivatives, the returns \(R\) are not “invariants”, i.e. they do not behave identically and independently across time.
- Therefore, estimation cannot be performed on returns, but rather on risk drivers \(X\), which are “invariants”

Example: bond

\[
R = \frac{P(X_1, X_2)}{P_0} - 1
\]

- \(P\): discount formula
- \(X_1\): govt curve changes
- \(X_2\): spread changes

Example: option

\[
R = \frac{BS(X_1, X_2)}{P_0} - 1
\]

- \(BS\): Black-Scholes formula
- \(X_1\): log-return of underlying
- \(X_2\): log-return of implied vol.
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \): risk driver
- \(b_{s,k} \): loading
- \(F_k \): systematic factor
- \(U_s \): idiosyncratic shock

2. Pricing

\[R_n = g(X_1, \ldots, X_S) \]

Traditional modeling of non-linear securities

- For non-equity securities such as bonds and derivatives, the returns \(R \) are not “invariants”, i.e. they do not behave identically and independently across time.
- Therefore, estimation cannot be performed on returns, but rather on risk drivers \(X \), which are “invariants”

Example: bond

\[
R = \frac{P(X_1, X_2)}{P_0} - 1
\]

- \(P \): discount formula
- \(X_1 \): govt curve changes
- \(X_2 \): spread changes

Example: option

\[
R = \frac{BS(X_1, X_2)}{P_0} - 1
\]

- \(BS \): Black-Scholes formula
- \(X_1 \): log-return of underlying
- \(X_2 \): log-return of implied vol.
Traditional modeling of non-linear securities

- For non-equity securities such as bonds and derivatives, the returns R are not “invariants”, i.e. they do not behave identically and independently across time.
- Therefore, estimation cannot be performed on returns, but rather on risk drivers X, which are “invariants”.
- Then, risk drivers X are transformed into returns R by “delta” or “duration” coefficients δ.

Example: bond

\[
R \approx \delta_1 X_1 + \delta_2 X_2
\]

- δ_1: curve duration
- δ_2: spread duration
- X_1: govt curve changes
- X_2: spread changes

Example: option

\[
R \approx \delta_1 X_1 + \delta_2 X_2
\]

- δ_1: delta
- δ_2: vega
- X_1: log-return of underlying
- X_2: log-return of implied vol.
Risk Estimation

1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
\[\begin{align*} X_s &= \text{risk driver} \\ b_{s,k} &= \text{loading} \\ F_k &= \text{systematic factor} \\ U_n &= \text{idiosyncratic shock} \]

2. Pricing
\[R_n \approx \sum_s \delta_{n,s} X_s \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[\text{Sdev} \{R_w\} = w' \delta \left[b \Sigma_F b' + \text{diag} \left(\sigma_U^2 \right) \right] \delta' w \]
\[\text{VaR} \{R_w\} = \text{Normal assumption} \]

Traditional modeling of non-linear securities
- For non-equity securities such as bonds and derivatives, the returns \(R \) are not “invariants”, i.e. they do not behave identically and independently across time
- Therefore, estimation cannot be performed on returns, but rather on risk drivers \(X \), which are “invariants”
- Then, risk drivers \(X \) are transformed into returns \(R \) by “delta” or “duration” coefficients \(\delta \)
- The risk computations follow
1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
- \(X_s \): risk driver
- \(b_{n,k} \): loading
- \(F_k \): systematic factor
- \(U_n \): idiosyncratic shock

2. Pricing
\[R_n \approx \sum_s \delta_{n,s} X_s \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[
\begin{align*}
\text{Sdev} \{ R_w \} &= w' \delta \left[b \Sigma_F b' + \text{diag} \left(\sigma_U^2 \right) \right] \delta' w \\
\text{VaR} \{ R_w \} &= \text{Normal assumption}
\end{align*}
\]

5. Attribution factors
\[F_k \]

6. Security-level attribution
\[R_n = \sum_k b_{n,k} F_k + U_n \]
\[b_{n,k} = \sum_s \delta_{n,s} b_{s,k} \]

Risk Attribution Rationales
- After obtaining aggregate portfolio risk (Sdev, VaR, CVaR, etc.), attribute it to individual factors
- Purpose: see how factors contributed to portfolio risk and make hedging decision

Traditional Risk Attribution Techniques
- Use same factors for attribution as for estimation
- Perform linear operations to define security-level risk attribution
Risk Attribution

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \) = risk driver
 - \(b_{n,k} \) = loading
 - \(F_k \) = systematic factor
 - \(U_n \) = idiosyncratic shock

2. Pricing
 \[R_n \approx \sum_s \delta_{n,s} X_s \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[S_{dev} \{ R_w \} = w' \delta \left[\sum F b' + \text{diag} \left(\sigma^2_U \right) \right] \delta' w \]
 \[V_{aR} \{ R_w \} = \text{Normal assumption} \]

Traditional Multi-Purpose Factor Models

5. Attribution factors
 \[F_k \]

6. Security-level attribution
 \[R_n = \sum_k b_{n,k} F_k + U_n \]
 \[b_{n,k} = \sum_s \delta_{n,s} s_{s,k} \]

7. Portfolio risk attribution: bottom up
 \[R_w = \sum_k b_{w,k} F_k + U_w \]
 \[b_{w,k} = \sum_n w_n b_{n,k} \]

Risk Attribution Rationales
- After obtaining aggregate portfolio risk (Sdev, VaR, CVaR, etc.), attribute it to individual factors
- Purpose: see how factors contributed to portfolio risk and make hedging decision

Traditional Risk Attribution Techniques
- Use same factors for attribution as for estimation
- Perform linear operations to define security-level risk attribution
- Perform bottom-up aggregation for portfolio-level risk attribution
Risk Estimation

1. **Risk drivers estimation**
 \[X_s = \sum_k \beta_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(\beta_{s,k} \): loading
 - \(F_k \): systematic factor
 - \(U_s \): idiosyncratic shock

2. **Pricing**
 \[R_n \approx \sum_s \delta_{n,s} X_s \]

3. **Aggregation**
 \[R_w = \sum_n w_n R_n \]

4. **Portfolio risk estimation**
 \[\text{Sdev} \{ R_w \} = w' \delta \left[b \Sigma_F b' + \text{diag} \left(\sigma_U^2 \right) \right] \delta' w \]
 \[\text{Var} \{ R_w \} = \text{Normal assumption} \]

Risk Attribution

5. **Attribution factors**
 \[F_k \]

6. **Security-level attribution**
 \[R_n = \sum_k \beta_{n,k} F_k + U_n \]
 - \(\beta_{n,k} = \sum_s \delta_{n,s} \beta_{s,k} \)

7. **Portfolio risk attribution: bottom up**
 \[R_w = \sum_k \beta_{w,k} F_k + U_w \]
 - \(\beta_{w,k} = \frac{\text{Cov} \{ R_w, F \}}{\text{Cov} \{ F \}} \)
 - \(\beta_{w,k} = \arg\min_{\beta} \text{Var} \{ R_w - \sum_k \beta_k F_k \} \)

Pitfalls

- Same factors used for both estimation and attribution: choice neither optimizes the estimation power nor the interpretability or practicality for hedging
- As an estimation model, \(b \) and \(F \) maximize r-square
- As an attribution model, \(b \) and \(F \) maximize r-square (CAPM)
- “delta” assumption can be inappropriate
- Bottom-up aggregation not flexible: small exposures better in residual
Risk Estimation
1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{s,k} \): loading
 - \(F_k \): systematic factor
 - \(U_s \): idiosyncratic shock

2. Pricing
 \[R_n \approx \sum_s \delta_{n,s} X_s \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{Sdev}\{R_w\} = w' \delta [b \Sigma_F b' + \text{diag}(\Sigma_U)] \delta' w \]
 \[\text{VaR}\{R_w\} = \text{Normal assumption} \]

Risk Attribution
5. Enhanced attribution factors
 \[\tilde{F}_j = \sum_k a_{j,k} F_k \quad F_k = \sum_j a_{k,j}^{-1} \tilde{F}_j \]

6. Security-level attribution
 \[R_n = \sum_j \tilde{b}_{n,j} \tilde{F}_j + U_n \]
 \[\tilde{b}_{n,j} = \sum_k \delta_{n,s} b_{s,k} a_{k,j}^{-1} \]

7. Portfolio risk attribution: bottom up
 \[R_w = \sum_j \tilde{b}_{w,j} \tilde{F}_j + U_w \]
 \[\tilde{b}_{w,j} = \sum_n w_n \tilde{b}_{n,j} \]

Pitfalls
- Similar factors used for both estimation and attribution: choice neither optimizes the estimation power nor the interpretability or practicality for hedging
- Factors restricted by the “systematic + idiosyncratic” assumption
- As an estimation model, \(b \) and \(F \) maximize r-square
- As an attribution model, \(b \) and \(F \) maximize r-square (CAPM)
- “delta” assumption can be inappropriate
- Bottom-up aggregation not flexible: small exposures better in residual
EXECUTIVE SUMMARY

TRADITIONAL MULTI-PURPOSE FACTOR MODELS

FACTORS ON DEMAND – THEORY

FACTORS ON DEMAND – APPLICATIONS

REFERENCES
Risk Estimation

1. Risk drivers estimation

\[
\sum_{k} F_k
\]

\[F_k\] = dominant factor

E.g. PCA facts

\[
\begin{bmatrix}
F_1 & F_K
\end{bmatrix}
\]

1 joint scenario
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \): risk driver
- \(b_{n,k} \): loading
- \(F_k \): dominant factor
- \(U_n \): residual

E.g. PCA facts, PCA res, stocks log.rets
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \): risk driver
- \(b_{n,k} \): loading
- \(F_k \): dominant factor
- \(U_n \): residual

E.g. PCA facts, PCA res, stocks log.rets
Risk Estimation

1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
\[
\begin{align*}
X_s & = \text{risk driver} \\
b_{n,k} & = \text{loading} \\
F_k & = \text{dominant factor} \\
U_n & = \text{residual}
\end{align*}
\]

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \) = risk driver
- \(b_{n,k} \) = loading
- \(F_k \) = dominant factor
- \(U_n \) = residual

2. Pricing

\[R_n = g_n (X_1, \ldots, X_S) \]
Risk Estimation

1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
\(X_s = \) risk driver
\(b_{n,k} = \) loading
\(F_k = \) dominant factor
\(U_n = \) residual

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

E.g. PCA facts PCA res stocks log.rets stocks lin. rets port ret

1 joint scenario
Risk Estimation

1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
- \(X_s \) = risk driver
- \(b_{n,k} \) = loading
- \(F_k \) = dominant factor
- \(U_n \) = residual

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[\text{Sdev} \{ R_w \} = \text{exact} \]
\[\text{VaR} \{ R_w \} = \text{exact} \]

E.g. PCA facts | PCA res | stocks log.rets | stocks lin. rets | port ret
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>(F_K)</td>
<td>(U_1)</td>
<td>(U_S)</td>
<td>(X_1)</td>
</tr>
</tbody>
</table>

1 joint scenario
Factors On Demand
Attilio Meucci

1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
\[\begin{align*}
X_s &= \text{risk driver} \\
F_k &= \text{dominant factor} \\
U_s &= \text{residual} \\
b_{s,k} &= \text{loading} \\
\end{align*} \]

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[\text{Sdev} \{ R_w \} = \text{exact} \]
\[\text{VaR} \{ R_w \} = \text{exact} \]

5. Attribution factors
\[Z_k | X_1, \ldots, X_S \]

Diagram:
- E.g.: PCA facts, PCA res, stocks log.rets, stocks lin. rets, port ret, attribution, GICS sectors
- Conditional scenarios given \(X \)
1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \) = risk driver
- \(b_{n,k} \) = loading
- \(F_k \) = dominant factor
- \(U_n \) = residual

2. Pricing

\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation

\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation

- \(Sdev \{ R_w \} \) = exact
- \(VaR \{ R_w \} \) = exact

5. Attribution factors

\[Z_k | X_1, \ldots, X_S \]

E.g. PCA facts, PCA res, stocks log.rets, stocks lin. rets, port ret, attribution, GICS sectors

Conditional scenarios given \(X \)
FACTORS ON DEMAND

Attilio Meucci

Risk Estimation

1. **Risk drivers estimation**
 \[
 X_s = \sum_k b_{s,k} F_k + U_s
 \]
 \(X_s\) = risk driver
 \(b_{s,k}\) = loading
 \(F_k\) = dominant factor
 \(U_s\) = residual

2. **Pricing**
 \[
 R_n = g_n (X_1, \ldots, X_S)
 \]

3. **Aggregation**
 \[
 R_w = \sum_n w_n R_n
 \]

4. **Portfolio risk estimation**
 \[
 \text{Sdev} \{R_w\} = \text{exact} \\
 V\alpha R \{R_w\} = \text{exact}
 \]

Risk Attribution

5. **Attribution factors**
 \[
 Z_k | X_1, \ldots, X_S
 \]

E.g.

<table>
<thead>
<tr>
<th>PCA facts</th>
<th>PCA res</th>
<th>stocks log.rets</th>
<th>stocks lin. rets</th>
<th>port ret</th>
<th>attribution</th>
<th>GICS sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>(F_K)</td>
<td>(U_1)</td>
<td>(U_S)</td>
<td>(X_1)</td>
<td>(X_S)</td>
<td>(Z_1)</td>
</tr>
<tr>
<td>(b_{s,k})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 joint scenario

conditional scenarios given \(X\)
Risk Estimation

1. **Risk drivers estimation**
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{n,k} \): loading
 - \(F_k \): dominant factor
 - \(U_n \): residual

2. **Pricing**
 \(R_n = g_n (X_1, \ldots, X_S) \)

3. **Aggregation**
 \(R_w = \sum_n w_n R_n \)

4. **Portfolio risk estimation**
 \[Sdev \{ R_w \} = \text{exact} \]
 \[Var \{ R_w \} = \text{exact} \]

Risk Attribution

5. **Attribution factors**
 \[Z_k | X_1, \ldots, X_S \]

FACTORS ON DEMAND

Attilio Meucci

FOD – Theory

Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{n,k} \): loading
 - \(F_k \): dominant factor
 - \(U_n \): residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[Sdev \{ R_w \} = \text{exact} \]
 \[Var \{ R_w \} = \text{exact} \]

Risk Attribution

5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]

E.g.

- **PCA facts**
 - \(F_1 \) to \(F_K \)
- **PCA res**
 - \(U_1 \) to \(U_S \)
- **stocks log.ret**
 - \(X_1 \) to \(X_S \)
- **stocks lin. rets**
 - \(R_1 \) to \(R_N \)
- **port ret**
 - \(R_w \)
- **attribute**
 - \(\sum_k d_k Z_k \)
- **GICS sectors**
 - \(Z_1 \) to \(Z_K \)

1 joint scenario

conditional scenarios given \(X \)
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \) = risk driver
- \(b_{n,k} \) = loading
- \(F_k \) = dominant factor
- \(U_n \) = residual

2. Pricing

\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation

\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation

\[S\text{dev} \{ R_w \} = \text{exact} \]
\[V\alpha R \{ R_w \} = \text{exact} \]

Risk Attribution

5. Attribution factors

\[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down

\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]

- \(R_w \) = portfolio return
- \(d_{w,k} \) = attribution loading
- \(Z_k \) = attribution factor
- \(\eta_w \) = residual

E.g.

- PCA facts
- PCA res
- stocks log.rets
- stocks lin. rets
- port ret
- attribution
- GICS sectors

1 joint scenario

X

conditional scenarios given \(X \)
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \): risk driver
- \(b_{n,k} \): loading
- \(F_k \): dominant factor
- \(U_n \): residual

2. Pricing

\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation

\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation

- Standard deviation \(\text{std} \{ R_w \} \) = exact
- VaR \(\{ R_w \} \) = exact

Risk Attribution

5. Attribution factors

\[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down

\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]

- \(R_w \): portfolio return
- \(d_{w,k} \): attribution loading
- \(Z_k \): attribution factor
- \(\eta_w \): residual

Diagram

- **E.g.** PCA facts, PCA res, stocks log.rets, stocks lin. rets, port ret, attribution, GICS sectors
- **1 joint scenario**
- **Conditional scenarios given** \(X \)
1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
- \(X_s \) = risk driver
- \(b_{n,k} \) = loading
- \(F_k \) = dominant factor
- \(U_n \) = residual

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
- Variance \(\text{Var} \{ R_w \} \) = exact
- Standard deviation \(\text{StdDev} \{ R_w \} \) = exact

5. Attribution factors
\[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
- \(R_w \) = portfolio return
- \(d_{w,k} \) = attribution loading
- \(Z_k \) = attribution factor
- \(\eta_w \) = residual

E.g. PCA facts | PCA res | stocks log.rets | stocks lin. rets | port ret | attribution | GICS sectors
\[F_1 \quad F_K \quad U_1 \quad U_S \quad X_1 \quad X_S \quad R_1 \quad R_N \quad R_w \quad \sum_k d_{w,k} Z_k \quad Z_1 \quad Z_K \]

1 joint scenario

Conditional scenarios given \(X \)
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]
\[X_s = \text{risk driver} \]
\[b_{n,k} = \text{loading} \]
\[F_k = \text{dominant factor} \]
\[U_n = \text{residual} \]

2. Pricing

\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation

\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation

- Sdev\{R_w\} = exact
- VaR\{R_w\} = exact

Risk Attribution

5. Attribution factors

\[Z_k \mid X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down

\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
\[d_{w} = \arg\max_{d \in \mathcal{C}} T (R_w, \sum_k d_k Z_k) \]
\[R_w = \text{portfolio return} \]
\[d_{w,k} = \text{attribution loading} \]
\[Z_k = \text{attribution factor} \]
\[\eta_w = \text{residual} \]
Risk Estimation

1. **Risk drivers estimation**
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \) = risk driver
 - \(b_{n,k} \) = loading
 - \(F_k \) = dominant factor
 - \(U_n \) = residual

2. **Pricing**
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. **Aggregation**
 \[R_w = \sum_n w_n R_n \]

4. **Portfolio risk estimation**
 \[Sdev \{ R_w \} = \text{exact} \]
 \[V a R \{ R_w \} = \text{exact} \]

Risk Attribution

5. **Attribution factors**
 \[Z_k | X_1, \ldots, X_S \]

6. **Portfolio risk attribution: top down**
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \) = portfolio return
 - \(d_{w,k} \) = attribution loading
 - \(Z_k \) = attribution factor
 - \(\eta_w \) = residual

Diagram

- PCA facts
- PCA res
- stocks log.rets
- stocks lin. rets
- port ret
- attribution
- GICS sectors

1 joint scenario

Conditional scenarios given \(X \)
Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{n,k} \): loading
 - \(F_k \): dominant factor
 - \(U_n \): residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{Var} \{ R_w \} = \text{exact} \]
 \[\text{E} \{ R_w \} = \text{exact} \]

Risk Attribution

5. Attribution factors
 \[\tilde{Z}_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k \tilde{d}_{w,k} \tilde{Z}_k + \eta_w \]
 - \(R_w \): portfolio return
 - \(\tilde{d}_{w,k} \): attribution loading
 - \(\tilde{Z}_k \): attribution factor
 - \(\eta_w \): residual

FACTORS ON DEMAND

- **Attilio Meucci**

FOD – Theory

- **Risk Estimation**
- **Risk Attribution**

Diagram

- PCA facts
- PCA res
- stocks log.rets
- stocks lin. rets
- port ret
- attribution
- hedges

1 joint scenario

conditional scenarios given \(X \)
Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{n,k} F_k + U_s \]
 - \(X_s \) = risk driver
 - \(b_{n,k} \) = loading
 - \(F_k \) = dominant factor
 - \(U_s \) = residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{Sdev} \{ R_w \} = \text{exact} \]
 \[\text{Var} \{ R_w \} = \text{exact} \]

Risk Attribution

5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \) = portfolio return
 - \(d_{w,k} \) = attribution loading
 - \(Z_k \) = attribution factor
 - \(\eta_w \) = residual

Factors on Demand - Features
1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
Risk Estimation
1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
2. Pricing
\[R_n = g_n(X_1, \ldots, X_S) \neq \sum_s \delta_{n,s} X_s \]
3. Aggregation
\[R_w = \sum_n w_n R_n \]
4. Portfolio risk estimation
\[
\begin{align*}
\text{Sdev \{R_w\}} & = \text{exact} \\
\text{Var \{R_w\}} & = \text{exact}
\end{align*}
\]

Risk Attribution
5. Attribution factors
\[Z_k \mid X_1, \ldots, X_S \]
\[R_n = \sum_k d_{n,k} Z_k + \eta_n \]
6. Portfolio risk attribution: top down
\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
\[d_{w} = \arg \max_{d \in \mathcal{C}} T(R_w, \sum_k d_k Z_k) \]
\[R_w = \text{portfolio return} \]
\[d_{w,k} = \text{attrition loading} \]
\[Z_k = \text{attrition factor} \]
\[\eta_w = \text{residual} \]

Factors on Demand - Features
1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
Risk Estimation

1. Risk drivers estimation
\[X_s = \sum_k b_{n,k} F_k + U_s \]
 \(X_s \) = risk driver
 \(b_{n,k} \) = loading
 \(F_k \) = dominant factor
 \(U_s \) = residual

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[\text{Sdev} \{ R_w \} = \text{exact} \]
\[\text{Var} \{ R_w \} = \text{exact} \]

Risk Attribution

5. Attribution factors
\[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 \(R_w \) = portfolio return
 \(d_{w,k} \) = attribution loading
 \(Z_k \) = attribution factor
 \(\eta_w \) = residual

Factors on Demand - Features

1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
3. Attribution factors \(Z \) are chosen to be interpretable and practical for hedging
Risk Estimation
1. Risk drivers estimation
\[X_s = \sum_k b_{n,k} F_k + U_s \]
\[X_s = \text{risk driver} \]
\[b_{n,k} = \text{loading} \]
\[F_k = \text{dominant factor} \]
\[U_s = \text{residual} \]

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[\text{Std} \{ R_w \} = \text{exact} \]
\[\text{Var} \{ R_w \} = \text{exact} \]

Risk Attribution
5. Attribution factors
\[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
\[R_w = \text{portfolio return} \]
\[d_{w,k} = \text{attribution loading} \]
\[Z_k = \text{attribution factor} \]
\[\eta_w = \text{residual} \]

Factors on Demand - Features
1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
3. Attribution factors \(Z \) are chosen to be interpretable and practical for hedging
4. Attribution loadings \(d \) are chosen to optimize r-square, CVaR, downside risk, etc
Risk Estimation

1. **Risk drivers estimation**
 \[
 X_s = \sum_k b_{s,k} F_k + U_s
 \]
 - \(X_s\) = risk driver
 - \(b_{n,k}\) = loading
 - \(F_k\) = dominant factor
 - \(U_s\) = residual

2. **Pricing**
 \[
 R_n = g_n (X_1, \ldots, X_S)
 \]

3. **Aggregation**
 \[
 R_w = \sum_n w_n R_n
 \]

4. **Portfolio risk estimation**
 \[
 \text{Sdev} \{R_w\} = \text{exact}
 \]
 \[
 \text{Var} \{R_w\} = \text{exact}
 \]

Risk Attribution

5. **Attribution factors**
 \[
 Z_k | X_1, \ldots, X_S
 \]

6. **Portfolio risk attribution: top down**
 \[
 R_w = \sum_k d_{w,k} Z_k + \eta_w
 \]
 - \(R_w\) = portfolio return
 - \(d_{w,k}\) = attribution loading
 - \(Z_k\) = attribution factor
 - \(\eta_w\) = residual

Factors on Demand - Features

1. Estimation factors \(F\) and loadings \(b\) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
3. Attribution factors \(Z\) are chosen to be interpretable and practical for hedging
4. Attribution loadings \(d\) are chosen to optimize r-square, CVaR, downside risk, etc
5. Constraints allow for long-only, best-few-out-of-many, etc
Risk Estimation

1. Risk drivers estimation
\[X_s = \sum_k b_{n,k} F_k + U_s \]
 \(X_s \): risk driver
 \(b_{n,k} \): loading
 \(F_k \): dominant factor
 \(U_s \): residual

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[
\begin{align*}
\text{Sdev} \{ R_w \} &= \text{exact} \\
\text{Var} \{ R_w \} &= \text{exact}
\end{align*}
\]

Risk Attribution

5. Attribution factors
\[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
\[
\begin{align*}
\overline{R_w} &= \sum_k d_{w,k} Z_k + \eta_w \\
\eta_w &= \text{residual}
\end{align*}
\]

7. Security-level attribution
\[R_n = \sum_k d_{n,k} Z_k + \eta_n \]

Factors on Demand - Features

1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
3. Attribution factors \(Z \) are chosen to be interpretable and practical for hedging
4. Attribution loadings \(d \) are chosen to optimize r-square, CVaR, downside risk, etc
5. Constraints allow for long-only, best-few-out-of-many, etc
6. Exact Linear interpretation/hedge of non-linear securities
Risk Estimation

1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]

\(X_s \) = risk driver
\(b_{n,k} \) = loading
\(F_k \) = dominant factor
\(U_n \) = residual

2. Pricing
\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[S\text{dev} \{R_w\} = \text{exact} \]
\[V\text{aR} \{R_w\} = \text{exact} \]

Risk Attribution

5. Attribution factors
\[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]

\(R_w \) = portfolio return
\(d_{w,k} \) = attribution loading
\(Z_k \) = attribution factor
\(\eta_w \) = residual

Factors on Demand - Features

1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
3. Attribution factors \(Z \) are chosen to be interpretable and practical for hedging
4. Attribution loadings \(d \) are chosen to optimize r-square, CVaR, downside risk, etc
5. Constraints allow for long-only, best-few-out-of-many, etc
6. No linear relationship between \(Z \) and \(F \): connection created by conditional distribution
Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 \[X_s = \text{risk driver} \]
 \[b_{n,k} = \text{loading} \]
 \[F_k = \text{dominant factor} \]
 \[U_n = \text{residual} \]

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{Sdev} \{ R_w \} = \text{exact} \]
 \[\text{Var} \{ R_w \} = \text{exact} \]

Risk Attribution

5. Attribution factors
 \[\tilde{Z}_k|X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k \tilde{d}_{w,k} \tilde{Z}_k + \tilde{\eta}_w \]
 \[R_w = \text{portfolio return} \]
 \[d_{w,k} = \text{attribution loading} \]
 \[Z_k = \text{attribution factor} \]
 \[\eta_w = \text{residual} \]

Factors on Demand - Features

1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
3. Attribution factors \(Z \) are chosen to be interpretable and practical for hedging
4. Attribution loadings \(d \) are chosen to optimize r-square, CVaR, downside risk, etc
5. Constraints allow for long-only, best-few-out-of-many, etc
6. Exact Linear interpretation/hedge of non-linear securities
7. No linear relationship between \(Z \) and \(F \): connection created by conditional distribution
8. Conditional distribution -> one estimation method, several possible interpretations/hedges
Risk Estimation
1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{n,k} \): loading
 - \(F_k \): dominant factor
 - \(U_s \): residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[Sdev \{ R_w \} = \text{exact} \]
 \[VaR \{ R_w \} = \text{exact} \]

Risk Attribution
5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]

7. Security-level attribution
 \[R_n = \sum_k d_{n,k} Z_k + \eta_n \]
 - \(R_w \): portfolio return
 - \(d_{w,k} \): attribution loading
 - \(Z_k \): attribution factor
 - \(\eta_w \): residual

Factors on Demand - Features
1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
3. Attribution factors \(Z \) are chosen to be interpretable and practical for hedging
4. Attribution loadings \(d \) are chosen to optimize r-square, CVaR, downside risk, etc
5. Constraints allow for long-only, best-few-out-of-many, etc
6. Exact Linear interpretation/hedge of non-linear securities
7. No linear relationship between \(Z \) and \(F \): connection created by conditional distribution
8. Conditional distribution -> one estimation method, several possible interpretations/hedges
9. Systematic + idiosyncratic -> dominant + residual
Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{n,k} F_k + U_s \]
 - \(X_s \) = risk driver
 - \(b_{n,k} \) = loading
 - \(F_k \) = dominant factor
 - \(U_n \) = residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[Sdev \{ R_w \} = \text{exact} \]
 \[VAR \{ R_w \} = \text{exact} \]

Risk Attribution

5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]
 \[R_n = \sum_k d_{n,k} Z_k + \eta_n \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \) = portfolio return
 - \(d_{w,k} \) = attribution loading
 - \(Z_k \) = attribution factor
 - \(\eta_w \) = residual

Factors on Demand - Features

1. Estimation factors \(F \) and loadings \(b \) are chosen to optimize the explanation power
2. Exact risk numbers through exact pricing
3. Attribution factors \(Z \) are chosen to be interpretable and practical for hedging
4. Attribution loadings \(d \) are chosen to optimize r-square, CVaR, downside risk, etc
5. Constraints allow for long-only, best-few-out-of-many, etc
6. Exact Linear interpretation/hedge of non-linear securities
7. No linear relationship between \(Z \) and \(F \): connection created by conditional distribution
8. Conditional distribution -> one estimation method, several possible interpretations/hedges
9. Systematic + idiosyncratic -> dominant + residual
10. Top-down attribution provides portfolio-specific best model
Factors on Demand - Features

1. Estimation factors F and loadings b are chosen to optimize the explanation power.
2. Exact risk numbers through exact pricing.
3. Attribution factors Z are chosen to be interpretable and practical for hedging.
4. Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc.
5. Constraints allow for long-only, best-few-out-of-many, etc.
6. Exact Linear interpretation/hedge of non-linear securities.
7. No linear relationship between Z and F: connection created by conditional distribution.
8. Conditional distribution -> one estimation method, several possible interpretations/hedges.

Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - X_s = risk driver
 - $b_{n,k}$ = loading
 - F_k = dominant factor
 - U_n = residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 - $\text{Sdev} \{ R_w \}$ = exact
 - $\text{Var} \{ R_w \}$ = exact

Risk Attribution

5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - R_w = portfolio return
 - $d_{w,k}$ = attribution loading
 - Z_k = attribution factor
 - η_w = residual

Attilio Meucci

FACTORS ON DEMAND

Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - X_s = risk driver
 - $b_{n,k}$ = loading
 - F_k = dominant factor
 - U_n = residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 - $\text{Sdev} \{ R_w \}$ = exact
 - $\text{Var} \{ R_w \}$ = exact

Risk Attribution

5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - R_w = portfolio return
 - $d_{w,k}$ = attribution loading
 - Z_k = attribution factor
 - η_w = residual

Factors on Demand - Features

1. Estimation factors F and loadings b are chosen to optimize the explanation power.
2. Exact risk numbers through exact pricing.
3. Attribution factors Z are chosen to be interpretable and practical for hedging.
4. Attribution loadings d are chosen to optimize r-square, CVaR, downside risk, etc.
5. Constraints allow for long-only, best-few-out-of-many, etc.
6. Exact Linear interpretation/hedge of non-linear securities.
7. No linear relationship between Z and F: connection created by conditional distribution.
8. Conditional distribution -> one estimation method, several possible interpretations/hedges.
Factors on Demand – Frequently Asked Questions

Q: Why not run a regression of portfolio returns R vs. attribution factors Z?
 A: R and Z are not necessarily “invariants”

Q: Why abandon “systematic + idiosyncratic” model?
 A: U is where managers look for “alpha” factors -> $\Sigma X \neq b\Sigma Fb' + diag (\sigma_U^2)$
 A: otherwise we cannot merge irrelevant “systematic” factors with “idiosyncratic” residual to obtain more efficient attribution/hedging
 A: in powerful estimation approaches (PCA,RMT) residual U is never idiosyncratic
 A: that model is not a consequence of APT/CAPM
Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{s,k} \): loading
 - \(F_k \): dominant factor
 - \(U_s \): residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{Sdev}\left\{ R_w \right\} = \text{exact} \]
 \[\text{Var}\left\{ R_w \right\} = \text{exact} \]

Risk Attribution

5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \): portfolio return
 - \(d_{w,k} \): attribution loading
 - \(Z_k \): attribution factor
 - \(\eta_w \): residual

Factors on Demand – Frequently Asked Questions

Q: Why should we not use delta approximation?

A: Risk of derivatives or non linear instruments at multi-day horizon is distorted
Risk Estimation
1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{s,k} \): loading
 - \(F_k \): dominant factor
 - \(U_s \): residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{Sdev} \{ R_w \} = \text{exact} \]
 \[\text{VaR} \{ R_w \} = \text{exact} \]

Risk Attribution
5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \): portfolio return
 - \(d_{w,k} \): attribution loading
 - \(Z_k \): attribution factor
 - \(\eta_w \): residual

Factors on Demand – Frequently Asked Questions
Q: Do we have to generate conditional scenarios for \(Z \)?
 A: Not always: if using historical scenarios, use historical (drivers for) \(Z \)

Q: Does FOD recommend specific estimation/attribution factors/techniques?
 A: No, FOD proposes a flexible, modular methodology that hosts all techniques

Q: Does FOD dismiss traditional multi-purpose factor models
 A: No, all traditional model are special cases of FOD
Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{n,k} \): loading
 - \(F_k \): dominant factor
 - \(U_n \): residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[
 \begin{align*}
 SD\{R_w\} &= \text{exact} \\
 VaR\{R_w\} &= \text{exact}
 \end{align*}
 \]

Risk Attribution

5. Attribution factors
 \[Z_k X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[
 \begin{align*}
 R_w &= \sum_k d_{w,k} Z_k + \eta_w \\
 d_{w,k} &= \arg\max_{d\in C} T (R_w, \sum_k d_k Z_k) \\
 R_w &= \text{portfolio return} \\
 d_{w,k} &= \text{attrtribution loading} \\
 Z_k &= \text{attrtribution factor} \\
 \eta_w &= \text{residual}
 \end{align*}
 \]

b, F: high statistical power
- Principal Component Analysis and Random Matrix Theory can be applied
- Factors and loadings are determined to minimize estimation error although they might be difficult to interpret.

Z: high interpretability/tradability
- Attribution factors examples
 - GICS Sectors: Material, Technology, Financials
 - Macro: S&P500, 10 year yield, Gold price, MSCI EM Index, Russell 2000

FOD Application #1: Optimize Factor Choice for Risk and Portfolio Mgmt.

FOD Application #1: Optimize Factor Choice for Risk and Portfolio Mgmt.
Risk Estimation
1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{n,k} \): loading
 - \(F_k \): dominant factor
 - \(U_n \): residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{Sdev} \{ R_w \} = \text{exact} \]
 \[\text{Var} \{ R_w \} = \text{exact} \]

Risk Attribution
5. Attribution factors
 \[(Z_k) X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \): portfolio return
 - \(d_{w,k} \): attribution loading
 - \(Z_k \): attribution factor
 - \(\eta_w \): residual

FOD Application #1:
Optimize Factor Choice for Risk and Portfolio Mgmt.

- **b, F** : high statistical power
- **Z** : high interpretability/tradability

volatility decomposition – per industry (RMT)

volatility decomposition – per factor (GICS)
Risk Estimation
1. Risk drivers estimation
\[
X_s = \sum_k b_{n,k} F_k + U_s
\]
- \(X_s\) = risk driver
- \(b_{n,k}\) = loading
- \(F_k\) = dominant factor
- \(U_s\) = residual

2. Pricing
\[
R_n = g_n (X_1, \ldots, X_S)
\]

3. Aggregation
\[
R_w = \sum_n w_n R_n
\]

4. Portfolio risk estimation
\[
\text{Sdev} \{R_w\} = \text{exact}
\]
\[
\text{Var} \{R_w\} = \text{exact}
\]

Risk Attribution
5. Attribution factors
\[
Z_k X_1, \ldots, X_S
\]

6. Portfolio risk attribution: top down
\[
R_w = \sum_k d_{w,k} Z_k + \eta_w
\]
- \(R_w\) = portfolio return
- \(d_{w,k}\) = attribution loading
- \(Z_k\) = attribution factor
- \(\eta_w\) = residual

FOD Application #2:
Custom attribution factors on the fly

- **X**: historical
 - No factor modes for \(X\), pure historical realization of risk drivers
 - \(R\) is not the time series of the returns
 - Explicitly no idiosyncratic term

- **Z**: \(g(X)\)
 - Attribution factors are deterministic functions of risk drivers
 - For instance, \(Z\) can be user-supplied definitions of value/momentum factors
 - FOD then allows to compare in real time the attribution to different, user-supplied factor models \(Z\) and \(\tilde{Z}\)
 - All models share the same risk statistics
Attilio Meucci

Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \) = risk driver
 - \(b_{n,k} \) = loading
 - \(F_k \) = dominant factor
 - \(U_n \) = residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{Sdev} \left\{ R_w \right\} = \text{exact} \]
 \[\text{Var} \left\{ R_w \right\} = \text{exact} \]

Risk Attribution

5. Attribution factors
 \[[Z_k] X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \) = portfolio return
 - \(d_{w,k} \) = attribution loading
 - \(Z_k \) = attribution factor
 - \(\eta_w \) = residual

FOD Application #3: Integrated Global and Regional Risk Models

- Global factors \(Z \) are deterministic, linear functions (aggregations) of the regional factors
 \[Z \equiv A \begin{pmatrix} F^{(\alpha)} \\ \vdots \\ F^{(\omega)} \end{pmatrix} \]

- Regional factors \(F \) constructed by cross-sectional regression on given loadings \(b \)
 - e.g. US Model: US sector factors
 \[R^{(\alpha)} = B^{(\alpha)} F^{(\alpha)} + U^{(\alpha)} \]
 - e.g. UK Model: UK financial, UK utilities,...
 \[R^{(\omega)} = B^{(\omega)} F^{(\omega)} + U^{(\omega)} \]

- e.g. global financial, global utilities,...
FACTORS ON DEMAND
Attilio Meucci

Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 \(X_s \) = risk driver
 \(b_{s,k} \) = loading
 \(F_k \) = dominant factor
 \(U_s \) = residual

2. Pricing
 \[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[
 \begin{align*}
 Sdev \{ R_w \} &= \text{exact} \\
 VaR \{ R_w \} &= \text{exact}
 \end{align*}
 \]

Risk Attribution

5. Attribution factors
 \[Z_k X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 \(R_w \) = portfolio return
 \(d_{w,k} \) = attribution loading
 \(Z_k \) = attribution factor
 \(\eta_w \) = residual

7. Security-level attribution
 \[R_n = \sum_k d_{n,k} Z_k + \eta_n \]

Z: returns of hedging instruments; **\(d \)**: attribution target as CVaR

- For hedging, the attribution factors must be the linear returns \(Z = P(t+1)/P(t)-1 \) of tradables
- Linear attribution (6) is important for hedging: only portfolios, i.e. linear combinations, are traded
- Profits and losses of hedged p&l \(\eta \) play a non-symmetrical role: non-linear pricing (2) properly induces asymmetries on \(R \); downside target CVaR in (6) accounts for asymmetries in \(\eta \)
- Thus FOD hedging (full-pricing/CVaR) and Black-Scholes hedging (delta/r-square) are different

Example: units of underlying to hedge call options

<table>
<thead>
<tr>
<th></th>
<th>100 days</th>
<th>150 days</th>
<th>200 days</th>
<th>250 days</th>
<th>300 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOD</td>
<td>5.8</td>
<td>5.3</td>
<td>5.0</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>BS</td>
<td>5.7</td>
<td>5.4</td>
<td>5.2</td>
<td>5.1</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Risk Estimation

1. Risk drivers estimation
 \[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{s,k} \): loading
 - \(F_k \): dominant factor
 - \(U_s \): residual

2. Pricing
 \[R_n = g_n(X_1, \ldots, X_S) \]

3. Aggregation
 \[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
 \[\text{SDev}\{R_w\} = \text{exact} \]
 \[\text{V}aR\{R_w\} = \text{exact} \]

Risk Attribution

5. Attribution factors
 \[Z_k | X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
 \[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \): portfolio return
 - \(d_{w,k} \): attribution loading
 - \(Z_k \): attribution factor
 - \(\eta_w \): residual

7. Security-level attribution
 \[R_n = \sum_k d_{n,k} Z_k + \eta_n \]

FOD Application #5: Best Pool on Demand / flexible constraints

d: constraint “few relevant out of many” in top-down attribution

- For hedging, traders prefer to put on fewer hedges. Therefore the selection of the best few trades should be optimized.
- For factor modeling, it does not make sense to include minimally represented factors in analysis. Better to add them to residual.
- Other constraints can be added (e.g. long only, sum-to-one, etc.)
Risk Estimation

1. Risk drivers estimation
\[X_s = \sum_k b_{s,k} F_k + U_s \]
 - \(X_s \): risk driver
 - \(b_{n,k} \): loading
 - \(F_k \): dominant factor
 - \(U_n \): residual

2. Pricing
\[R_n = g_n (X_1, \ldots, X_s) \]

3. Aggregation
\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation
\[
\begin{align*}
\text{Sdev} \{ R_w \} &= \text{exact} \\
\text{Var} \{ R_w \} &= \text{exact}
\end{align*}
\]

Risk Attribution

5. Attribution factors
\[(Z_k) X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down
\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]
 - \(R_w \): portfolio return
 - \(d_{w,k} \): attribution loading
 - \(Z_k \): attribution factor
 - \(\eta_w \): residual

7. Security-level attribution
\[R_n = \sum_k d_{n,k} Z_k + \eta_n \]

Z: returns of sub-portfolios; portfolios: past holdings

- The attribution of the current holdings to the past holdings allows the portfolio manager to evaluate the turnover (half-life) of their positions

\[
\begin{align*}
Z_1 &= w_{t-1} R \\
\vdots \\
Z_K &= w_{t-K} R
\end{align*}
\]
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \): risk driver
- \(b_{s,k} \): loading
- \(F_k \): dominant factor
- \(U_s \): residual

2. Pricing

\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation

\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation

\[\begin{align*}
\text{Sdev} \{R_w\} &= \text{exact} \\
\text{Var} \{R_w\} &= \text{exact}
\end{align*} \]

Risk Attribution

5. Attribution factors

\[(Z_k) X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down

\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]

- \(R_w \): portfolio return
- \(d_{w,k} \): attribution loading
- \(Z_k \): attribution factor
- \(\eta_w \): residual

7. Security-level attribution

\[R_n = \sum_k d_{n,k} Z_k + \eta_n \]

FOD Application #6: Turnover-trading persistence

- The attribution of the current holdings to the past holdings allows portfolio managers to evaluate the turnover (half-life) of their positions.

- If the attribution target in (6) is set as the r-square and the attribution optimization is unconstrained we obtain the analytical solution in Grinold (2006):

\[d_w = (W' \Sigma_R W)^{-1} W' \Sigma_R w_t \]

- FOD allows portfolio managers to customize their analysis, with arbitrary targets and constraints:

\[Z = \begin{bmatrix} w'_{t-1} R \\ \vdots \\ w'_{t-K} R \end{bmatrix} \]
Risk Estimation

1. Risk drivers estimation

\[X_s = \sum_k b_{s,k} F_k + U_s \]

- \(X_s \): risk driver
- \(b_{n,k} \): loading
- \(F_k \): dominant factor
- \(U_n \): residual

2. Pricing

\[R_n = g_n (X_1, \ldots, X_S) \]

3. Aggregation

\[R_w = \sum_n w_n R_n \]

4. Portfolio risk estimation

- \(\text{Sdev} \{ R_w \} = \text{exact} \)
- \(\text{Var} \{ R_w \} = \text{exact} \)

Risk Attribution

5. Attribution factors

\[Z_k X_1, \ldots, X_S \]

6. Portfolio risk attribution: top down

\[R_w = \sum_k d_{w,k} Z_k + \eta_w \]

- \(R_w \): portfolio return
- \(d_{w,k} \): attribution loading
- \(Z_k \): attribution factor
- \(\eta_w \): residual

\[d' = 1, d \geq 0 \]

FOD Applications #7: Point in Time Style Analysis

- **Z**: style factors; constraints: long-only, sum-to-one

- Traditional style analysis a-la-Sharpe runs a constrained regression of portfolio returns \(R_p(t) \) on style factors \(Z(t) \)
- In traditional style analysis the past returns are affected by the past allocation decisions \(R_p(t-k)=w(t-k) \times R(t-k) \) includes a component due to rebalancing \(w(t-k) \)
- FOD allows to perform point-in-time style analysis based only the current exposures \(w(t) \)
Attilio Meucci - “Factors on Demand”
Risk, July 2010, p 84-89

MATLAB Central Files Exchange (see above article)

www.symmys.com > Teaching > Talks